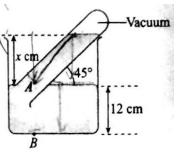
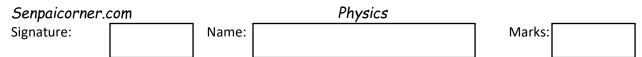
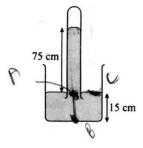

Senpaicorner.com			Physics		
Signature:		Name:		Marks:	

Barometer and Manometer Worksheet Q1.

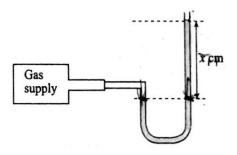

The figure shows a barometer. Calculate the pressure at

- a) point A in cm Hg,
- b) Point B in cm Hg,
- c) Point C in cm Hg,
- d) Point D in cm Hg

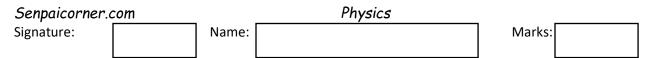

Q2. The figure shows a barometer in a slanting position. If the atmospheric pressure is 76 cm Hg. Calculate

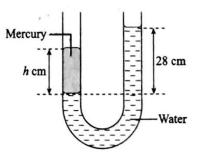


- a) the length of x,
- b) The pressure at A in cm Hg
- c) The pressure at B in cm Hg


The figure shows a mercury barometer that is used to measure atmospheric pressure. What is the atmospheric pressure in Pascal? [Density mercury = 13600 kg m⁻³; g = 10 N kg⁻¹

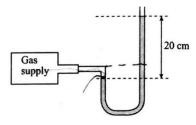
Q4.


A mercury manometer as shown in the figure is used to measure the pressure of a certain gas.



- a) What is the length of x if the pressure of the gas is 113 cm Hg?
- b) Calculate the gas pressure in Pascal

[Density of mercury = $13600 \text{ kg m}^{-3} \text{ g} = 10 \text{ N kg}^{-1}$]



Q5. The figure shows a U-tube used to determine the length of the mercury column. Based on the information shown, determine the length of x. [Density of mercury = 13600 kg m⁻³; water = 1000 kg m⁻³]

Q6. The figure shows a manometer connected to a gas supply. Find the gas pressure in Pa. [Density of mercury = 13600 kg m⁻³; Atmospheric pressure = 103 360 Pa; $g = 10 \text{ N kg}^{-1}$]

Senpaicorner.com		Physics		
Signature:	Name:		Marks:	

Q7.

Diagram 2 shows a manometer being used to measure the pressure of a gas supply.

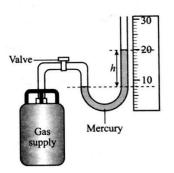


Figure 7.

- a) Determine the pressure of gas in
 - i) cm Hg
 - ii) kPa

[Atm pressure = 76 cm Hg; Density of mercury = 13 600 kg m^{-3}]

- b) What will happen to the difference in level of liquid, h in the manometer if
 - i) The manometer tube is broader
 - ii) A liquid denser than mercury is used in the manometer
- c) The density of water is 1000 kg m⁻³. Explain why water is not used in a manometer.