Chapter 6 Deformation of solids

6.1 Stress and strains

Candidates should be able to:

- understand that deformation is caused by tensile or compressive forces (forces and deformations will be assumed to be in one dimension only)
- 2 understand and use the terms load, extension, compression and limit of proportionality
- 3 recall and use Hooke's law
- 4 recall and use the formula for the spring constant k = F/x
- 5 define and use the terms stress, strain and the Young modulus
- 6 describe an experiment to determine the Young modulus of a metal in the form of a wire
 - Forces can deform an object.
 - When an object is stretched by the force we say it is under a tensile load.
 - When an object is compressed it is under compressive load.

- Recall when a tensile load is applied onto a spring, the spring will extend by x amount.
- Below is a revision of the terminology used in IGCSE/ SPM for the forceextension graph above.
- Hooke's Law: Springs extend in proportion to loads, as long as they are under their proportional limit.
- Limit of proportionality: Point and which load and extension are no longer proportional.
- Elastic limit: Point at which spring will not return to its original shape even after the load is removed.
- Spring constant k: The gradient of the graph is the spring constant which measures the stiffness of the spring in Nm⁻¹.
- A material obeys Hooke's Law if its extension (x) is directly proportional to its applied load (F).

$$F = kx$$

• If we normalize the tensile and compressive load with the area (divide F with A), we obtain the stress the object is under.

$$\sigma = \frac{F}{A}$$

• Likewise, if we normalize extension (x) with the original length of the object (L) we obtain its **strain** (ϵ).

$$\varepsilon = \frac{x}{L}$$

• We can plot stress vs strain just like the way we did force vs extension

- Likewise we can find the slope of the linear part of the curve $(\frac{Stress}{Strain})$.
- The linear slope is called the Young's Modulus (E) of the object.
- E also measures the stiffness of the object.
- The SI unit is in Pa.

$$E = \frac{\sigma}{\varepsilon}$$

6.2 Elastic and plastic behaviour

Candidates should be able to:

- 1 understand and use the terms elastic deformation, plastic deformation and elastic limit
- 2 understand that the area under the force-extension graph represents the work done
- 3 determine the elastic potential energy of a material deformed within its limit of proportionality from the area under the force–extension graph
- 4 recall and use $E_p = \frac{1}{2}Fx = \frac{1}{2}kx^2$ for a material deformed within its limit of proportionality
 - Elastic deformation is the deformation that occurs before the elastic limit.
 - If you removed the load before this point, the object will remove to its original shape.
 - Plastic deformation is the deformation that occurs after the elastic limit.
 - Load removal will not restore the object to its original shape.
 - Recall that the **area** under a force-extension graph represents the **work done** to deform the material.
 - The work done is equal to the **elastic potential energy** stored in the object (think spring).
 - For an object that is deformed within the limit of proportionality (still linear), the EPE can be found from

$$EPE = \frac{1}{2}Fx$$

or

$$EPE = \frac{1}{2}kx^2$$