

CIE A Level Physics Formula Sheet (2025, 2026 and 2027 Syllabus)

AS Level Physics (9702)

Chapter 1: Physical Quantities and Unit	
,	
Chapter 2: Kinematics	
Average velocity (ms ⁻¹) = $\frac{\text{displacement (m)}}{\text{time (c)}}$	$v = \frac{x}{t}$
Acceleration (ms ⁻²) = $\frac{\text{final velocity (ms}^{-1}) - \text{initial velocity (ms}^{-1})}{\text{time (s)}}$	$a = \frac{v - u}{t}$
Equations of motion	$v = u + at$ $d = \frac{1}{2}(v + u)t$ $d = ut + \frac{1}{2}at^{2}$
	$a = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2ad$
Chapter 3: Dynamics	t a laac
Force (N) = mass (kg) \times acceleration (ms ⁻²)	F = ma
change in momentum (kgms ⁻¹)	$F = ma$ $F = \frac{\Delta p}{t}$
Force (N) = $\frac{1}{\text{time (s)}}$	$F = \frac{1}{t}$
Momentum (kgms ⁻¹) = mass (kg) \times velocity (ms ⁻¹)	p = mv
Chapter 4 Forces, Density and Pressure	
Moment (Nm) = Force (N) × perpendicular distance from pivot (m)	M = Fd
Sum of clockwise moments (Nm) = sum of anticlockwise moments (Nm)	$F_1d_1 = F_2d_2$
Density (kgm ⁻³) = $\frac{\text{mass (kg)}}{\text{volume}^3}$ Pressure(Pa) = $\frac{\text{Force (N)}}{\text{area (m}^2)}$	$F_1 d_1 = F_2 d_2$ $\rho = \frac{m}{V}$ $P = \frac{F}{A}$
$Pressure(Pa) = \frac{Force (N)}{area (m^2)}$	$P = \frac{F}{A}$
Fluid Pressure (Pa) = density (kgm ⁻³) × gravitational field strength (ms ⁻² or Nkg ⁻¹) × height (m)	$P = \rho g h$
Force (Newtons) = density (kgm $^{-3}$) × gravitational field strength (ms $^{-2}$ or Nkg $^{-1}$) × volume (m 3)	$P = \rho g V$
Chapter 5: Work, Energy and Power	
Work (J) = force (N) \times distance moved (m)	W = Fd
Efficiency (%) = $\frac{\text{useful power output (W or J)}}{\text{total power input (W or J)}} \times 100\%$	$\eta = \frac{P_{out}}{P_{in}} \times 100\%$
Power (W) = $\frac{\text{work (J)}}{\text{time (s)}}$	$\eta = \frac{P_{out}}{P_{in}} \times 100\%$ $P = \frac{W}{t}$
Power (W) = Force (N) \times velocity (ms ⁻¹)	P = Fv
Gravitational potential energy (J) = mass (kg) \times gravitational field strength (ms ⁻² or Nkg ⁻¹) \times height (m)	GPE = mgh
Kinetic Energy (J) = $\frac{1}{2}$ × mass (kg) × velocity ² (ms ⁻¹)	$KE = \frac{1}{2}mv^2$
Chapter 6: Deformation of Solids	
Hooke's law: Force (N) = constant (Nm ⁻¹) × extension (m)	F = kx
$Stress (Pa) = \frac{Force (N)}{area (m^2)}$	$\sigma = \frac{F}{A}$
$Strain = \frac{Change in length (meters)}{Original length (meters)}$	$\varepsilon = \frac{x}{L}$
Elastic potential energy (Joules) = $\frac{1}{2}$ × Force (N) × change in length (x)	$EPE = \frac{1}{2}Fx$
Elastic potential energy (Joules) = $\frac{1}{2}$ × spring constant (Nm ⁻¹) × change in length (m) ²	$EPE = \frac{1}{2}kx^2$

Chapter 7: Waves	
$Frequency (Hz) = \frac{1}{Period (s)}$	$f = \frac{1}{T}$
Wave speed (ms-1) = frequency (Hz) × wavelength (m)	$V = f\lambda$
Intensity $(Wm^{-3}) = \frac{Power(W)}{Area(m^{-3})}$	$I = \frac{P}{A}$ $f_0 = \frac{v}{v \pm v_s} f_s$
Observed frequency (Hz)	$f_0 = \frac{v}{f_s}$
$= \frac{\text{speed of sound waves } (\text{ms}^{-1})}{\text{speed of sound waves } (\text{ms}^{-1})}$	$v \pm v_s$
$= \frac{\text{speed of sound waves (ms}^{-1})}{\text{speed of sound waves (ms}^{-1}) \pm \text{source velocity (ms}^{-1})}$	
\times source frequency (Hz) Remaining intensity (Wm ⁻³) = Original intensity (Wm ⁻³) \times cos ² (angle between	$I = I_0 \cos \theta$
polarized light and transmission axis)	$I = I_0 \cos \theta$
Chapter 8: Superposition	
Two fixed ends string	
Fundamental	$\lambda = 2L$
NODE NODE	$f = \frac{c}{2L}$
Second harmonic	$\lambda = L$
N L=A	$f = \frac{c}{L}$
Third harmonic	$\lambda = \frac{2L}{L}$
N L=3A/2	$\lambda = \frac{2L}{3}$ $f = \frac{3c}{2L}$
Both ends closed air column	
	$L = \frac{n\lambda}{2}$ $f = \frac{nv}{2L}$
One end open air column	
	$L = \frac{n\lambda}{4}$ $f = \frac{nv}{4L}$
Both ends open air column	
	$L = \frac{n\lambda}{n}$
	$L = \frac{n\lambda}{2}$ $f = \frac{nv}{2L}$
Wavelength (m) = $\frac{\text{slit width (m)} \times \text{distance between two successive lines (m)}}{\text{distance between two successive lines (m)}}$	$\lambda = \frac{ax}{D}$
slit width (m) x sin (angle of diffraction)	$d \sin \theta$
Wavelength (m) = $\frac{\text{Sit Witth (iii)} \times \text{Sin (aligne of diffraction)}}{\text{nth order of beam}}$	$\lambda = \frac{a \sin b}{n}$

Chapter 9: Electricity	
$Current (A) = \frac{charge (C)}{time (s)}$	$I = \frac{Q}{t}$
Current (A) = Cross-sectional area $(m^2) \times number$ of electrons per $m^3 (m^{-3}) \times drift$	I = Anvq
velocity (ms ⁻¹) x electron charge (C)	
$Voltage (V) = \frac{energy transferred (J)}{charge (C)}$	V = W
charge (C)	$V = \frac{W}{Q}$
Energy transferred $(J) = power(W) \times time(s)$	W = Pt
Power (W) = current (A) \times voltage (V)	P = IV
Power (W) = current ² (A) × resistance (Ω)	$P = I^2R$
Voltage (V) = current (A) \times resistance (Ω)	V = IR
Resistance (Ω) = $\frac{\text{resistance (}\Omega\text{)}}{area(\text{m}^2)}$	_
	$R = \frac{\rho l}{\Lambda}$
Wires have a circular cross section, area = $\pi \times \text{radius}^2$	A
Chapter 10: DC Circuits	
e. m. f (V) = $\frac{\text{work done by cell (J)}}{\text{charge (C)}}$	$F = \frac{W}{}$
	$E = \frac{W}{Q}$ $E = V + Ir$
e.m.f (V) = potential difference (V) + current (A) \times internal resistance (Ω)	
Resistors in series: Total Resistance (Ω) = sum of individual resistors (Ω)	$R_{total} = R_1 + R_2 + R_3 + \dots R_n$
Resistors in parallel:	$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots \frac{1}{R_n}$
1 1	Rtotal R ₁ R ₂ R _n
$\frac{1}{\text{total resistance }(\Omega)} = \frac{1}{\text{sum of individual resistors }(\Omega)}$	D
Output voltage (V) = $\frac{\text{Resistance of resistor attached to voltmeter }(\Omega)}{\text{Total resistance }(\Omega)} \times \text{Input voltage }(V)$	$V_0 = \frac{R_2}{R_1 + R_2} V$
Chapter 11: Particle Physics	
Alpha:	$_{Z}^{A}X \rightarrow _{Z-2}^{A-4}Y + _{2}^{4}He$
$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$	
Beta:	${}_Z^A X \rightarrow {}_{Z+1}^A Y + {}_{-1}^0 e$
$^{234}_{90}Th \rightarrow ^{234}_{91}Pa + ^{0}_{-1}e$	
Gamma	${}_Z^A X \rightarrow {}_Z^A Y + \gamma$
	l .

A Level Physics (9702)

Chapter 12: Motion in a Circle	
Angular displacement (rad) = $\frac{\text{length of arc (m)}}{\text{radius (m)}}$	$\Delta Q = \frac{\Delta S}{s}$
	$\Delta\theta = \frac{\Delta s}{r}$ $\omega = 2\pi f$
Angular speed (rads-1) = $2 \times \pi \times$ frequency (Hz)	$\omega = 2\pi f$
Tangential velocity (ms $^{-1}$) = radius (m) × angular speed (rads $^{-1}$)	$V_t = r\omega$
Centripetal acceleration (ms ⁻²) = $\frac{\text{tangential velocity (ms}^{-1})^2}{\text{radius (m)}}$	$V_t = r\omega$ $a_c = \frac{v_t^2}{r}$
Centripetal acceleration (ms ⁻²) = radius (m) \times angular speed (rads ⁻¹) ²	$a_c = r\omega^2$
Centripetal force (N) = $\frac{\text{mass (kg)} \times \text{tangential velocity (ms}^{-1})^2}{\text{radius (m)}}$	$F_c = \frac{mv_t^2}{r}$
Centripetal force (N) = mass (kg) × radius (m) × angular speed (rads ⁻¹) ²	$F_c = mr\omega^2$
Chapter 13: Gravitational Field	
-	F
Gravitational field strength (ms ⁻²) = $\frac{\text{Weight (N)}}{mass (kg)}$	$g = \frac{F}{m}$
Gravitational force (N)	$F_G = \frac{Gm_1m_2}{r^2}$
Gravitational constant $(Nm^2kg^{-2}) \times mass$ of object one $(kg) \times mass$ of object two (kg)	$r_G = \frac{1}{r^2}$
separation ² (m ²)	
Gravitational field strength (ms ⁻²)	$g = \frac{Gm_1}{r^2}$
$= \frac{\text{Gravitational rich strength (ins.)}}{\text{Gravitational constant (Nm}^2 \text{kg}^{-2}) \times \text{mass of object (kg)}}$	r^2
separation-(m-)	
Gravitational potential (Jkg ⁻¹)	$\Phi = \frac{-Gm_1}{r}$
$= \frac{-\text{Gravitational constant (Nm}^2 \text{kg}^{-2}) \times \text{mass of object (kg)}}{\text{mass of object (kg)}}$	r
separation (m)	
Gravitational potential energy (J) Gravitational constant $(Nm^2kg^{-2}) \times mass$ of object one $(kg) \times mass$ of object two (kg)	$GPE = \frac{Gm_1m_2}{r}$
= separation (m)	
Chapter 14: Temperature	
Celsius to Kelvin: Temperature in Celsius (°C) = Temperature in Kelvin (K) - 273.15	$T = \theta + 273.15$
Energy (J) = mass (kg) \times specific heat capacity (Jkg ⁻¹ °C ⁻¹) \times temperature change (°C)	$Q = mc\theta$
Energy (J) = mass (kg) \times specific latent capacity (Jkg ⁻¹)	Q = mL
Chapter 15: Ideal Gases	
Pressure (Pa) \times Volume (m ³) = number of moles \times molar gas constant (m ² kg s ⁻² K ⁻¹ mol ⁻¹) \times Temperature (K)	pV = nRT
Pressure (Pa) \times Volume (m ³) = Number of molecules \times Boltzman constant (J K ⁻¹) \times Temperature (K)	pV = NkT
Mean square speed (ms ⁻¹)	$\sqrt{\langle c^2 \rangle} = c_{rms}$
Pressure (Pa) × Volume (m ³) = $1/3$ × Number of molecules × mass of one molecule of gas (kg) × mean square speed of the molecules (ms ⁻¹)	$pV = \frac{1}{3}Nm\langle c^2 \rangle$
Kinetic energy (J) = $3/2 \times Boltzman constant$ (J K ⁻¹) × Temperature (K)	$E_K = 3/2 kT$

Chapter 16: Thermodynamics	
Work (J) = Pressure (Pa) \times Change in volume (m ³)	$W = p\Delta V$
Change in internal energy (J) = Energy supplied by heating (J) + Work done on system (J)	$\Delta U = q + W$
Chapter 17: Oscillations	
Angular frequency (rads-1) = $2 \times \pi \times$ frequency (Hz)	$\omega = 2\pi f$
Acceleration of an object oscillating in SHM (ms ⁻²) = - angular frequency ² (rads ⁻¹) ² × displacement (m)	$a = -\omega^2 x$
Position (m) = maximum displacement (m) \times sin (angular frequency (rads-1) \times time (s))	$x = x_0 \sin(\omega t)$
Position (m) = maximum displacement (m) \times cos (angular frequency (rads ⁻¹) \times time (s))	$x = x_0 \cos(\omega t)$
Speed (ms ⁻¹) = maximum speed (ms ⁻¹) × cos (angular frequency (rads ⁻¹) × time (s))	$v = v_0 \cos(\omega t)$
speed (ms ⁻¹) = \pm angular frequency (rads ⁻¹) × $\sqrt{\text{maximum displacement (m)}^2 - \text{position (m)}^2}$	$v = \pm \omega \sqrt{x_0^2 - x^2}$
Total energy of a system (J) = $\frac{1}{2}$ × mass (kg) × angular frequency (rads-1) ² × maximum displacement (m) ²	$E = \frac{1}{2} m \omega^2 x_0^2$
Chapter 18: Electric Fields	
Electric field strength $(NC^{-1}) = \frac{Force (N)}{Charge (C)}$	$E = \frac{F}{q}$
Electric field strength $(Vm^{-1}) = \frac{\text{Potential difference } (V)}{\text{Separation between the plates } (m)}$	$E = \frac{\Delta V}{\Delta d}$
Electrostatic force (N) = $\frac{\text{point charge one }(C) \times \text{point charge two (C)}}{4 \times \pi \times \text{permittivity of free space }(Fm^{-1}) \times \text{separation}^2(m^2)}$	$F = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r^2}$
Electric field strength (Vm ⁻¹) $= \frac{\text{point charge } (C)}{4 \times \pi \times \text{permittivity of free space } (\text{Fm}^{-1}) \times \text{separation}^2(\text{m}^2)}$	$E = \frac{Q}{4\pi\varepsilon_0 r^2}$
Electric potential (V) = $\frac{\text{point charge (C)}}{4 \times \pi \times \text{permittivity of free space (Fm}^{-1}) \times \text{separation } (m)}$	$V = \frac{Q}{4\pi\varepsilon_0 r}$
Electric potential energy (J) $= \frac{\text{point charge one } (C) \times \text{point charge two } (C)}{4 \times \pi \times \text{permittivity of free space } (Fm^{-1}) \times \text{separation } (m)}$	$EPE = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r}$

Chapter 19: Capacitance	
Capacitance (Farad) = $\frac{\text{Charge (C)}}{\text{Potential difference (V)}}$	$C = \frac{Q}{V}$
Potential difference (V)	C - V
Capacitance (Farad) = $4 \times \pi \times$ permittivity of free space (Fm ⁻¹) × separation (m)	$C = 4\pi \varepsilon_0 r$
Capacitor in parallel: Total capacitance (F) = sum of individual capacitance (F)	$C_{total} = C_1 + C_2 + C_3 + \dots C_n$
Capacitor in series:	$\frac{C_1 + C_2 + C_3 + \dots C_n}{\frac{1}{C_{total}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots \frac{1}{C_n}}$
$\frac{1}{\text{total capacitance (F)}} = \frac{1}{\text{sum of individual capacitance (C)}}$	
Elastic stored (Joules) = $\frac{1}{2}$ × Capacitance (F) × Potential difference (V) ²	W = ½ CV ²
Time constant (s) = resistance (Ω) × capacitance (F)	$\tau = RC$
	$I = I_0 e^{-\frac{t}{RC}}$
Equations to determine current, potential difference, and charge left after a certain amount of time	$V = V_0 e^{-\frac{t}{RC}}$
	$Q = Q_0 e^{-\frac{t}{RC}}$
Chapter 20: Magnetic Fields	
Force (N) = Magnetic field flux density (Tesla) \times Current (A) \times Length (m) \times sin (angle between conductor and magnetic field)	$F = BIL \sin \theta$
Force (N) = Magnetic field flux density (Tesla) \times Charge (C) \times speed of charge (ms ⁻¹) \times sin (angle between charge trajectory and magnetic field)	$F = BQv \sin \theta$
Magnetic field flux density $(T) \times Currrent(A)$	D
Hall voltage (V) = $\frac{1}{\text{number density of electrions (m}^{-3}) \times \text{thickness (m)} \times \text{charge (C)}}$	$v_H = B \frac{I}{ntq}$
Magnetic flux (Webers) = magnetic flux density (T) \times area (m ²) \times cos (degrees)	$\Phi = BA \cos \theta$
Magnetic flux linkage (Wb turns) = magnetic flux density (T) \times area (m ²) \times turns of wire \times cos (degrees)	$ΦN = BAN \cos θ$
Chapter 21: Alternating Current	
Current (A) = Peak current (A) \times sin (angular frequency (rads-1) \times time (s))	I = I ₀ sin (ωt)
Voltage (V) = Peak voltage (V) \times sin (angular frequency (rads ⁻¹) \times time (s))	$V = V_0 \cos(\omega t)$
RMS Current (A) = $\frac{\text{Peak current (A)}}{\sqrt{2}}$	$I_{rms} = \frac{I_0}{\sqrt{2}}$
RMS Voltage (V) = $\frac{\text{Peak voltage (V)}}{\sqrt{2}}$	$V_{rms} = \frac{V_0}{\sqrt{2}}$
Mean power (W) = $\frac{\text{Power (W)}}{2}$	$P_{mean} = \frac{P}{2}$

Chapter 22: Quantum Physics	
Photon energy (J) = Planck's constant (Js) \times frequency (Hz)	E = hf
(C - 111
Energy (J)	E
Momentum (Ns) = $\frac{\text{Energy (J)}}{\text{speed of light (ms}^{-1})}$	$p = \frac{E}{c}$
Photon energy (J) = threshold energy (J) + $\frac{1}{2}$ × mass (kg) × velocity (ms ⁻¹) ²	$hf = \Phi + 1/2mv^2$
	h
$wavelength (m) = \frac{Planck's constant (Js)}{Momentum (Ns)}$	$\lambda = \frac{h}{p}$
Momentum (NS)	p
Photon energy (J) = Difference between two energy levels (J)	$hf = E_1 - E_2$
Thotal energy ()) Difference between two energy levels ())	m E ₁ E ₂
Chapter 23: Nuclear Physics	
Energy (J) = mass defect (kg) \times speed of light (ms ⁻¹) ²	$E = mc^2$
Average decay rate (s) = decay constant (s-1) \times number of remaining nuclei	$A = \frac{\Delta N}{\Delta t} = -\lambda N$
	$\Delta t = \Delta t$
0.602	0 602
Half life (s) = $\frac{0.693}{\text{decay constant } (s^{-1})}$	$t_{0.5} = \frac{0 \cdot 693}{\lambda}$
decay constant (s 1)	λ
Number of remaining nuclei = Original number of nuclei $\times e^{-\text{decay constant (s}^{-1})\text{time(s)}}$	$N = N_0 e^{-\lambda t}$
Number of remaining nuclei = Original number of nuclei x e access constants	$IV = IV_0e$
Chapter 24: Medical Physics	
Acoustic impedance (kg m-2 s-1) = density (kgm-3) \times speed of sound in material (ms-1)	7 - 00
Acoustic impedance (kg m $^{-2}$ s $^{-1}$) = density (kgm $^{-3}$) × speed of sound in material (ms $^{-1}$)	Ζ = ρc
	·
Intensity of reflected wave (Wm ⁻²)	·
Intensity of reflected wave (Wm ⁻²) Intensity of incident wave (Wm ⁻²)	Z = ρc $\frac{I_r}{I_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$
Intensity of reflected wave (Wm ⁻²) Intensity of incident wave (Wm ⁻²)	·
Intensity of reflected wave (Wm ⁻²) Intensity of incident wave (Wm ⁻²)	·
	·
	$\frac{I_r}{I_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$
	$\frac{I_r}{I_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$
	$\frac{I_r}{I_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$
	$\frac{I_r}{I_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$
	$\frac{I_r}{I_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$
	$\frac{I_r}{I_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$ $F = \frac{L}{4\pi d^2}$
	$\frac{I_r}{I_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$ $F = \frac{L}{4\pi d^2}$
	$\frac{I_r}{I_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$
	$\frac{I_r}{I_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$ $F = \frac{L}{4\pi d^2}$ $= 2 \cdot 9 \times 10^{-3}$
$\frac{\text{Intensity of reflected wave (Wm}^{-2})}{\text{Intensity of incident wave (Wm}^{-2})} = \frac{\left(\text{impendance of material two (kgm}^{-2}\text{s}^{-1}) - \text{impendanceof material one(kgm}^{-2}\text{s}^{-1})\right)^2}{\left(\text{impendance of material two (kgm}^{-2}\text{s}^{-1}) + \text{impendanceof material one(kgm}^{-2}\text{s}^{-1})\right)^2}}{\text{Intensity (Wm}^{-2}) = \text{Intensity of incident beam (Wm}^{-2})}{\times \text{ e}^{-\text{absoprtion coefficient (m}^{-1})\text{distance(m)}}} $ $\text{(for ultrasound and x-ray)}$ $\text{Chapter 25: Astronomy and Cosmology}}$ $\text{Radiant flux intensity (Wm}^{-2}) = \frac{\text{Luminosity (W)}}{4 \times \pi \times \text{distance}^2\text{(m}^2)}}$ $\text{Wavelength (m)} \times \text{temperature (K)} = 2 \cdot 9 \times 10^{-3}$ $\text{Luminosity (W)} = 4 \times \pi \times \text{radius}^2\text{ (m}^2\text{)} \times \text{Stefan-Boltzmann constant (Wm}^{-2}\text{K}^{-4}\text{)} \times \text{Radiant flux intensity}}$	$\frac{I_r}{I_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$ $F = \frac{L}{4\pi d^2}$
$\frac{\text{Intensity of reflected wave (Wm}^{-2})}{\text{Intensity of incident wave (Wm}^{-2})} = \frac{\left(\text{impendance of material two (kgm}^{-2}\text{s}^{-1}) - \text{impendance of material one(kgm}^{-2}\text{s}^{-1})\right)^2}{\left(\text{impendance of material two (kgm}^{-2}\text{s}^{-1}) + \text{impendance of material one(kgm}^{-2}\text{s}^{-1})\right)^2}}{\text{Intensity (Wm}^{-2}) = \text{Intensity of incident beam (Wm}^{-2})}{\times e^{-\text{absoprtion coefficient (m}^{-1})\text{distance(m)}}} \\ \text{(for ultrasound and x-ray)}$ $\frac{\text{Chapter 25: Astronomy and Cosmology}}{4 \times \pi \times \text{distance}^2(\text{m}^2)}}$ $\text{Wavelength (m)} \times \text{temperature (K)} = 2 \cdot 9 \times 10^{-3}$ $\text{Luminosity (W)} = 4 \times \pi \times \text{radius}^2(\text{m}^2) \times \text{Stefan-Boltzmann constant (Wm}^{-2}\text{K}^{-4}) \times \text{temperature}^4(\text{K})^4}$	$\frac{I_r}{I_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$ $F = \frac{L}{4\pi d^2}$ $= 2 \cdot 9 \times 10^{-3}$ $L = 4\Pi r^2 \sigma T^4$
$\frac{\text{Intensity of reflected wave (Wm}^{-2})}{\text{Intensity of incident wave (Wm}^{-2})} = \frac{\left(\text{impendance of material two (kgm}^{-2}\text{s}^{-1}) - \text{impendance of material one(kgm}^{-2}\text{s}^{-1})\right)^2}{\left(\text{impendance of material two (kgm}^{-2}\text{s}^{-1}) + \text{impendanceof material one(kgm}^{-2}\text{s}^{-1})\right)^2}}{\text{Intensity (Wm}^{-2}) = \text{Intensity of incident beam (Wm}^{-2})}{\times e^{-\text{absoprtion coefficient (m}^{-1})\text{distance(m)}}} \\ \text{(for ultrasound and x-ray)}$ $\frac{\text{Chapter 25: Astronomy and Cosmology}}{\text{Chapter 25: Astronomy and Cosmology}}} \\ \text{Radiant flux intensity (Wm}^{-2}) = \frac{\text{Luminosity (W)}}{4 \times \pi \times \text{distance}^2(\text{m}^2)}} \\ \text{Wavelength (m)} \times \text{temperature (K)} = 2 \cdot 9 \times 10^{-3}$ $\frac{\text{Luminosity (W)} = 4 \times \pi \times \text{radius}^2(\text{m}^2) \times \text{Stefan-Boltzmann constant (Wm}^{-2}\text{K}^{-4}) \times \text{temperature}^4(\text{K})^4} \\ \text{shift in wavelength (m)} \text{shift in frequency (Hz)} \text{speed of recession (ms}^{-1})}$	$\frac{I_r}{I_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$ $F = \frac{L}{4\pi d^2}$ $= 2 \cdot 9 \times 10^{-3}$ $L = 4\Pi r^2 \sigma T^4$
$\frac{\text{Intensity of reflected wave (Wm}^{-2})}{\text{Intensity of incident wave (Wm}^{-2})} = \frac{\left(\text{impendance of material two (kgm}^{-2}\text{s}^{-1}) - \text{impendance of material one(kgm}^{-2}\text{s}^{-1})\right)^2}{\left(\text{impendance of material two (kgm}^{-2}\text{s}^{-1}) + \text{impendance of material one(kgm}^{-2}\text{s}^{-1})\right)^2}}{\text{Intensity (Wm}^{-2}) = \text{Intensity of incident beam (Wm}^{-2})}{\times e^{-\text{absoprtion coefficient (m}^{-1})\text{distance(m)}}} \\ \text{(for ultrasound and x-ray)}$ $\frac{\text{Chapter 25: Astronomy and Cosmology}}{4 \times \pi \times \text{distance}^2(\text{m}^2)}}$ $\text{Wavelength (m)} \times \text{temperature (K)} = 2 \cdot 9 \times 10^{-3}$ $\text{Luminosity (W)} = 4 \times \pi \times \text{radius}^2(\text{m}^2) \times \text{Stefan-Boltzmann constant (Wm}^{-2}\text{K}^{-4}) \times \text{temperature}^4(\text{K})^4}$	$\frac{I_r}{I_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$ $F = \frac{L}{4\pi d^2}$ $= 2 \cdot 9 \times 10^{-3}$
$\frac{\text{Intensity of reflected wave (Wm}^{-2})}{\text{Intensity of incident wave (Wm}^{-2})} = \frac{\left(\text{impendance of material two (kgm}^{-2}\text{s}^{-1}) - \text{impendanceof material one(kgm}^{-2}\text{s}^{-1})\right)^2}{\left(\text{impendance of material two (kgm}^{-2}\text{s}^{-1}) + \text{impendanceof material one(kgm}^{-2}\text{s}^{-1})\right)^2}}{\text{Intensity (Wm}^{-2})} = \frac{\left(\text{Intensity (Wm}^{-2}\text{s}^{-1}) + \text{impendanceof material one(kgm}^{-2}\text{s}^{-1})\right)^2}{\times e^{-\text{absoprtion coefficient (m}^{-1}\text{distance(m)}}} \times e^{-\text{absoprtion coefficient (m}^{-1}\text{distance(m)})}} \times e^{-\text{absoprtion coefficient (m}^{-1}\text{distance(m)})} \times e^{-\text{absoprtion coefficient (m}^{-1}\text{distance(m)})}} \times e^{-\text{absoprtion coefficient (m}^{-1}\text{distance(m)})}} \times e^{-\text{absoprtion coefficient (m}^{-1}\text{distance(m)})} \times e^{-\text{absoprtion coefficient (m}^{-1}\text{distance(m)})} \times e^{-\text{absoprtion coefficient (m}^{-1}\text{distance(m)})} \times e^{-\text{absoprtion coefficient (m}^{-1}\text{distance(m)})} \times e^{-\text{absoprtion coefficient (m}^{-1}\text$	$\frac{I_r}{I_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$ $F = \frac{L}{4\pi d^2}$ $= 2 \cdot 9 \times 10^{-3}$ $L = 4\Pi r^2 \sigma T^4$ $\frac{\Delta \lambda}{\lambda} = \frac{\Delta f}{f} = \frac{v}{C}$
$\frac{\text{Intensity of reflected wave (Wm}^{-2})}{\text{Intensity of incident wave (Wm}^{-2})} = \frac{\left(\text{impendance of material two (kgm}^{-2}\text{s}^{-1}) - \text{impendance of material one(kgm}^{-2}\text{s}^{-1})\right)^2}{\left(\text{impendance of material two (kgm}^{-2}\text{s}^{-1}) + \text{impendanceof material one(kgm}^{-2}\text{s}^{-1})\right)^2}}{\text{Intensity (Wm}^{-2}) = \text{Intensity of incident beam (Wm}^{-2})}{\times e^{-\text{absoprtion coefficient (m}^{-1})\text{distance(m)}}} \\ \text{(for ultrasound and x-ray)}$ $\frac{\text{Chapter 25: Astronomy and Cosmology}}{\text{Chapter 25: Astronomy and Cosmology}}} \\ \text{Radiant flux intensity (Wm}^{-2}) = \frac{\text{Luminosity (W)}}{4 \times \pi \times \text{distance}^2(\text{m}^2)}} \\ \text{Wavelength (m)} \times \text{temperature (K)} = 2 \cdot 9 \times 10^{-3}$ $\frac{\text{Luminosity (W)} = 4 \times \pi \times \text{radius}^2(\text{m}^2) \times \text{Stefan-Boltzmann constant (Wm}^{-2}\text{K}^{-4}) \times \text{temperature}^4(\text{K})^4} \\ \text{shift in wavelength (m)} \text{shift in frequency (Hz)} \text{speed of recession (ms}^{-1})}$	$\frac{I_r}{I_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$ $F = \frac{L}{4\pi d^2}$ $= 2 \cdot 9 \times 10^{-3}$ $L = 4\Pi r^2 \sigma T^4$